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Abstract
The magnetic and magneto-elastic properties of a single crystal of TbB6 are
studied. In the ordered range metamagnetic behaviours are observed and
complex phase diagrams are determined for magnetic fields along fourfold
and threefold directions. In the paramagnetic phase the third-order magnetic
susceptibilities and the parastriction curves show anisotropic behaviour which
could be accounted for by crystalline electric field (CEF) effects. A set of
CEF parameters is proposed on the basis of the analysis of the experimental
magnetic and quadrupolar susceptibilities. Though non-negligible, the
deduced quadrupolar couplings are weak in comparison with those previously
determined in PrB6.

1. Introduction

The rare earth hexaborides, RB6, crystallize in the CaB6-type structure, which can be described
as a simple CsCl-type arrangement of B6 octahedra and rare earth ions. The variety of
the physical properties observed in these low-carrier-density compounds has been attracting
interest for more than two decades. In the domain of applications LaB6 has received much
attention because of its very low work function, which makes it particularly suitable for
thermionic emission [1]. In more fundamental research, CeB6 [2–4] and SmB6 [5] have
been widely studied. SmB6 is an intermediate-valence compound presenting a semiconductor
behaviour at low temperature. CeB6 is considered as the archetype of the dense Kondo system.
CeB6 is also claimed to present an antiferroquadrupolar ordering in the paramagnetic phase
between TQ ≈ 3.3 K and TN ≈ 2.4 K [6]. However, the mechanisms originating this
quadrupolar ordering are still not elucidated. It may be noted that the Kondo coupling on the Ce
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ions makes difficult a clear analysis of these mechanisms within the usual formalism. In PrB6,
which shows properties reminiscent of CeB6, Morin et al [7] have confirmed that negative
quadrupolar pair interactions exist in the paramagnetic phase (TN = 6.9 K). Nevertheless
they pointed out that additional couplings have to be considered to completely understand
the behaviour of PrB6. The properties of GdB6 appear also very unusual. For instance its
Néel temperature, TN = 15 K, is anomalously small compared with the other heavy rare earth
compounds. Fisk et al [8] have suggested that short range order sets in the paramagnetic
phase. Unexpectedly for an S-state system, GdB6 exhibits a first-order type transition at TN
and, in addition, a second magnetic transition occurs at T ∗ = 8.6 K [9, 10]. Up to now
the magnetic structures and their microscopic origins remain unknown. By reason of their
incongruent melting, which makes the growth of single crystals difficult [11], the other heavy
rare earth hexaborides have been less investigated [12–14]. TbB6, DyB6 and HoB6 have been
reported to order antiferromagnetically at TN = 19.5, 25.6 and 5.6 K respectively [12]. The
important softening of the elastic constantC44 observed in these three compounds suggests that
noticeable magneto-elastic couplings and, possibly, quadrupolar pair interactions are active in
these compounds [13].

It is now well established that among the different types of interaction present in the
rare earth ion (R) based systems, the quadrupolar ones deeply influence the magnetic and
magneto-elastic properties [15]. They can affect the order and the temperature of the magnetic
transitions, stabilize an easy magnetization direction different from that determined by the
crystalline electric field (CEF) and also contribute to the selection of the magnetic structure.
For instance negative quadrupolar (antiferroquadrupolar) interactions stabilize multi-axial spin
arrangements. This is well illustrated by intermetallic compounds of the CsCl-type family
like TmCu, DyAg or NdZn [16–20]. The interplay between quadrupolar, CEF, bilinear
and magneto-elastic interactions gives rise to complex (H, T ) magnetic phase diagrams. In
some cases the quadrupolar pair interactions can be large enough to dominate the bilinear
ones, leading to a pure quadrupolar ordering in the paramagnetic phase. The occurrence
of ferroquadrupolar orderings in TmZn, TmCd or CeAg [21] is unambiguously supported
by the consistency of the analysis of the numerous experimental results. The existence of
purely antiferroquadrupolar phases, as proposed for PrPb3 [22], TmGa3 [23] or CeB6, is less
clear.

The understanding of the specific properties of CeB6 will strongly benefit from a complete
insight into the properties in the rest of the RB6 series. We have undertaken the study of TbB6

with the aim of determining interplay and strength of the different type of interaction in this
compound. Here we first present the magnetic and magneto-elastic measurements performed
on a single crystal in the ordered and paramagnetic phases. In a second part, we develop an
analysis of the experimental results in the paramagnetic phase within the CEF susceptibility
formalism.

2. Experimental conditions

The single crystals of TbB6 are grown by the crucible-free vertical floating zone technique
under pressurized high-purity argon gas [11]. In the present work we used the same single
crystal, a sphere of 3.1 mm diameter, for magnetization and magnetostriction measurements.
Both type of measurement were performed at the Laboratoire Louis Néel.

The magnetization processes were measured by the extraction method in the temperature
range 1.5–300 K. Two cryomagnets which supply magnetic fields up to 11 and 16 T respectively
were used. The sensitivity of the measurements reaches 5×10−4 emu in the whole temperature
range. Isofield and isothermal magnetization curves were measured with the magnetic fields
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Figure 1. Arrotts plots deduced from the magnetization curves measured with the magnetic field
applied along a fourfold axis. The change of the initial slope of the curve at 21 K indicates that the
ordered phase is reached.

applied successively along the fourfold and threefold axes of the cubic crystallographic
structure.

The magnetostriction measurements were performed using a high-accuracy capacitance
dilatometer. The set-up allows measurements of the thermal expansion and the
magnetostriction in the temperature range 3–250 K, under magnetic fields up to 6.5 T with
a typical resolution less than 1 Å. Thanks to the rotation of the capacitance cell around the
vertical axis of the cryostat it is possible to adjust the angle between the probed axis and the
horizontal field direction. When the measurements are performed along the fourfold axis for
instance, both the parallel,�l‖, and the perpendicular,�l⊥, changes of length can be measured
within a single run.

3. The paramagnetic phase

3.1. Magnetization measurements

The first-order magnetic susceptibility, χ(1), of TbB6 was deduced from the Arrotts plots:
M2 = f (H/M). As shown in figure 1, the plots have a linear behaviour at all temperatures
in the range 21.5–300 K. Below 21.5 K, the curves change slope in the low-field region,
indicating that the ordered phase was reached. It can then be determined that TN ranges
between 21 and 21.5 K. The thermal variation of the inverse of the first-order susceptibility in
fields applied along the fourfold and threefold directions respectively is reported in figure 2.
Both thermal variations follow a Curie–Weiss law and, as expected for a cubic compound, no
anisotropy is observed. The effective magnetic moment deduced from the experimental slope
is µeff = 9.65 ± 0.02 µB , in good agreement with the theoretical value for the Tb3+ ion,
µeff = 9.721 µB . The intercept of the Curie–Weiss line with the temperature axis yields a
paramagnetic Curie temperature, θp, of −38.7 ± 1 K.

The third-order magnetic susceptibility, χ(3), was deduced in the paramagnetic domain
from the slope of the Arrotts plots: χ(3) = −[χ(1)]4[�(µ0H/M)/�M2]. Figure 3 shows the
thermal variation of the third-order susceptibility determined for both the tetragonal (H ‖ [001]
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Figure 2. Thermal variation of the inverse of the first-order susceptibility, 1/χ(1), determined for
magnetic fields applied along the [111] (open squares) and [001] (full triangles) axes. The lines
represent the thermal variation of 1/χ(1) calculated with the sets of CEF parameters given in the
figure and θp = −37 K.

axis) and the trigonal (H ‖ [111] axis) symmetries. The experimental curves exhibit a large
anisotropy in a wide range of temperatures, up to 150 K. In the tetragonal symmetry χ(3)

is negative at high temperature. While cooling, it first decreases, passes through a shallow
minimum around 40 K, then starts to sharply increase and becomes positive below 25 K. In the
trigonal symmetry χ(3) remains negative in the whole studied temperature range. However,
it presents a much steeper decrease than in the tetragonal symmetry when cooling and a well
peaked minimum is observed at 30 K.

3.2. Parastriction measurements

In the paramagnetic phase the field-induced relative change of lengths, (�l/ l)‖ = λ‖, along
the field direction, and (�l/ l)⊥ = λ⊥ perpendicular to it, were measured in fields up to 5 T,
applied successively along the [001] and [111] axes. Figure 4 shows the variation of the
tetragonal symmetry strain, λ‖ − λ⊥, as a function of the square of the field. In fields larger
than 1.5 T, λ‖ −λ⊥ varies linearly withH 2. The same dependence is observed for the trigonal
strain. λ‖ −λ⊥ is found to be negative for both the tetragonal and trigonal modes. The thermal
variation of H/

√|λ‖ − λ⊥| has been deduced for the trigonal mode (H ‖ [111]) with a good
accuracy up to 250 K (figure 5(a)). Above 50 K, H/

√|λ‖ − λ⊥| increases linearly with the
temperature, according to a Curie-like law. Below this temperature its behaviour is much more
of Van Vleck type. The determination ofH/

√|λ‖ − λ⊥| in the tetragonal mode (H ‖ [001]) is
less precise due to the weaker magneto-elastic couplings in this mode as observed by Nakamura
et al in sound velocity measurements [13]. In this last mode,H/

√|λ‖ − λ⊥| increases linearly
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Figure 3. Thermal variation of the third-order magnetic susceptibility, χ(3), determined (a) for
fields applied along a threefold axis (trigonal symmetry), (b) for fields applied along a fourfold axis
(tetragonal symmetry). The lines represent the calculated third-order susceptibilities using the set
W = −0.8 K, x = 0.8, for the CEF parameters and the values of the dipolar, θp , and quadrupolar,
Gε,γ , constants indicated in the figure. Note that in the trigonal symmetry, the curves calculated
with different values of the quadrupolar constants are all superimposed.

with the temperature in the whole studied range (figure 5(b)). Therefore, like the third-order
magnetic susceptibility, the parastriction presents an anisotropic behaviour.

4. Magnetization processes in the ordered phase

In the ordered range isothermal and isofield magnetization curves were collected for fields
applied along the fourfold and threefold axes. Along both axes the magnetization processes
of the sphere reveal metamagnetic transitions.

At 2 K, for a field along the [001] axis, two transitions are observed at µ0Hc1 = 9 T and
µ0Hc2 = 12.2 T on the magnetization curve. At each jump the magnetization is increased
by about 1 µB . A third jump occurs at µ0Hc3 = 14 T. Under an applied field of 14.5 T, the
magnetization reaches 5.25 µB . This value is far from the 9 µB expected for the saturated
moment of the Tb3+ ion. This indicates that the field polarized paramagnetic state is still
not reached. Decreasing the field a large hysteresis is observed for all the transitions as
shown in figure 6(a). Figure 6(a) also compares the magnetization at 2 and 3 K. At 3 K the
magnetization shows again steep steps at 9 and 12.2 T. The jump at 14 T is strongly damped
and shows no hysteresis. Increasing the temperature the structures in the magnetization curves
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Figure 4. Evolution of the tetragonal symmetry strain, λ‖ − λ⊥, as a function of the applied
magnetic field at T = 35 K.

progressively smooth off and the hysteresis decreases. The critical fields were then deduced
from the derivatives dM/dH as shown in figure 6(b). The isofield measurements have allowed
to determine the evolution of the paramagnetic-ordered phase transition line as function of
the field. The maximum of the M(T ) curves defines the transition temperature. Below this
temperature and for some values of the applied field, theM(T ) curves show changes in the slope
(see figure 7), which generally evidence phase transitions. The different features observed in
both the isothermal and the isofield processes allowed one to build the (H, T ) magnetic phase
diagram when the field is along the fourfold axis. This diagram is presented in figure 8(a).
Extrapolating down to zero field the paramagnetic-ordered phase transition line leads to a Néel
temperature of 21 K in agreement with the determination from the Arrotts plots. TN is then
slightly larger than the value previously reported [12]. In the ordered range the three phases,
I, II and III are unambiguously established by jumps in the magnetization curve itself. The
lines between phases II and II′ or III and III′ were deduced from maxima in the derivatives
(see figure 6(b)). Structures in the isofield curves apparently confirm the line between phases
II and II′. But, as expected for horizontal transition lines, no anomalies associated with the
phase III–phase III′ transition are observed in the isofield curves. The existence of phase III′

is then more questionable.
For fields applied along a threefold axis the magnetization process at 1.77 K presents four

steps at 9.7, 11.1, 11.9 and 12.4 T respectively (see figure 9). Decreasing the field a hysteresis
is again observed at these transitions, but much weaker than along the [001] axis. Under the
maximum value of the applied field, 14.5 T, the magnetization reaches only 5.2 µB . In this
case also the field-polarized paramagnetic phase is far for being reached. The evolution of
the magnetization curves as function of the temperature is illustrated in figure 9. The two
highest transitions rapidly merge together and above 4 K only one transition remains. Further
increasing the temperature the low-field transition also smooths off and above 6 K it has
completely disappeared. Figure 10 shows the thermal evolution of the magnetization under
several applied fields. The (H, T ) magnetic phase diagram built for fields along the [111] axis
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Figure 5. Full dots represent the experimental thermal variation of H/
√|λ‖ − λ⊥|, (a) in the

trigonal mode (H ‖ [111]), (b) in the tetragonal mode (H ‖ [001]). The lines represent
the calculations performed with W = −0.8 K, x = 0.8 and the magneto-elastic coefficients
Bε = −27.4 K and Bγ = −15.3 K, using the values of the dipolar, θp , and quadrupolar, Gε,γ ,
constants given in the figure.

is presented in figure 8(b). One remarkable feature is the existence of a critical point ending
the line between phases I and I′. A very similar feature has been observed in the phase diagram
of the ternary compound DyAlGa by Gignoux et al [24]. Phase II becomes very narrow above
7 K but seems to extend up to 15 K. The evolution as a function of the field of the transition
temperature, between ordered and paramagnetic phases, is very similar to the one observed
along the [001] axis (figure 8(a)).
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Figure 6. Field applied along a fourfold axis. (a) Magnetization curves measured at 2 K (full
and open dots) and 3 K (open and full diamonds). Line symbols represent the measurements
decreasing the magnetic field. (b) Magnetization curves measured at 13 K (open dots) and 18 K
(full triangles). The full dots and open triangles represent the derivatives, dM/dH , at T = 13 and
18 K respectively.

5. Analysis within the CEF-susceptibility formalism

The measurements of elastic constants, parastriction and third-order magnetic susceptibilities
are valuable methods to study the quadrupolar interactions in rare earth compounds. Starting
from the knowledge of the CEF parameters, the CEF-susceptibility formalism developed by
Morin and Schmitt [15] has allowed, for many rare earth systems, a quantitative analysis of the
quadrupolar interactions in the paramagnetic phase. Conversely the susceptibility formalism
may be in some cases an alternative method to determine these CEF parameters. For instance
in TbIn3, the CEF scheme was successfully determined by fitting the different susceptibilities
measured on a dilute compound [25]. The basic Hamiltonian used to describe, in a quantum
approach, the magnetic and magneto-elastic properties of the rare earth ions is the sum of
the CEF Hamiltonian, HCEF , the exchange interactions and the Zeeman coupling, HJ , the
magneto-elastic, HME , and the quadrupolar, HQ, Hamiltonians. The spin Heisenberg-type
exchange, the quadrupolar and the magneto-elastic couplings are treated within the mean field
approximation (MFA). The expressions of all these Hamiltonians are given in [15]. Generally
in the paramagnetic phase the one-ion CEF Hamiltonian is first diagonalized and the remaining
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Figure 7. Thermal evolution of the magnetization measured for several values of the field applied
along the fourfold axis.

terms, H1 = HJ + HME + HQ, are treated applying the perturbation method. The expansion
is carried out up to the second order for the strain components, εµ=γ,ε, the quadrupolar
operators, Q = 〈O0

2 〉 or P = 〈Pij 〉, and to the fourth order for the field, H , and the magnetic
moment M . As in a cubic symmetry, the two normal strain modes can be fully decoupled
according to the external stress direction, the tetragonal (γ ) and the trigonal (ε) modes can
be considered separately. From the partition function an analytical expression for the free
energy is derived, which includes the four CEF single-ion susceptibilities: χ0, χµ=γ,ε, χ(2)µ=γ,ε
and χ(3)µ=γ,ε. χ0 is the usual first-order magnetic susceptibility. χµ=γ,ε is a quadrupolar strain
susceptibility and χ(2)µ=γ,ε a quadrupolar field susceptibility, which couples the quadrupolar
operator to the magnetic field. Finally χ(3)µ=γ,ε is the third-order magnetic susceptibility related
to the initial curvature of the magnetization processes. All these susceptibilities depend only
on the cubic CEF scheme and on the matrix elements of the magnetic dipolar (J ) and electric
quadrupolar (O0

2 , Pij ) operators between the CEF eigenfunctions (appendices 3 and 4 in [15]).
The equilibrium values of M , Q or P and ε are deduced from the minimization of the free
energy. In the tetragonal mode γ , this leads to the following coupled expressions:

M = gJµB〈Jz〉 = χMH + χ(3)M H 3 with

χM = χ0

1 − nχ0
and χ

(3)
M = 1

(1 − nχ0)4

[
χ(3)γ + 2Gγ

(χ(2)γ )2

1 −Gγχγ

]

ε
γ

1 = Bγ

C
γ

0

〈O0
2 〉 = Bγ

C
γ

0

Q and Q = χQH
2 with

χQ = χ(2)γ

(1 − nχ0)2(1 −Gγχγ )
. (1)

In these expressions, n andGγ are the bilinear exchange and the total quadrupolar constants
respectively. Gγ is defined as Gγ = [(Bγ )2/C

γ

0 ] + Kγ . Bγ is the magneto-elastic coupling
constant, Cγ

0 = C0
11 − C0

12 the background elastic constant and Kγ the two-ion quadrupolar



6316 S A Granovsky et al

Figure 8. (a) (H, T ) magnetic phase diagram for magnetic fields applied along a fourfold axis.
The large full dots represent the steps directly observed on the isothermal magnetic processes. The
small full and open dots represent the structures obtained from the derivatives dM/dH . The open
triangles correspond to the features observed on the isofield curves. (b) (H, T ) magnetic phase
diagram determined for fields along a threefold axis. The full dots represent the steps observed in
the isothermal magnetization curves and the open triangles the structures in the M(T ) curves.

coupling constant. In the limit of H = 0, the equilibrium conditions allow us to deduce the
following relation for the elastic constant:

Cγ = C
γ

0 − (Bγ )2χγ

(1 −Kγχγ )
. (2)

For the trigonal mode the non-zero terms areM = √
3gJµB〈Jz〉 with 〈Jz〉 = 〈Jx〉 = 〈Jy〉,

P = 〈Pxy〉 = 〈Pyz〉 = 〈Pzx〉 and εε = εε1 = εε2 = εε3. The minimization of the free energy
leads then to the expressions:

M = χMH + χ(3)M H 3 with χ
(3)
M = 1

(1 − nχ0)4

[
χ(3)ε + 6Gε (χ(2)ε )2

1 −Gεχε

]
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Figure 9. Isothermal magnetization processes at different temperatures for fields applied along a
threefold axis. At T = 1.77 K, full dots represent the measurements increasing the field and open
dots measurements decreasing the field. For clarity the curves have been offset by 2 µB .

Figure 10. Isofield magnetization curves for fields applied along the [111] axis.

εε = Bε

Cε
0

P and P = χPH
2 with χP = χ(2)ε

(1 − nχ0)2(1 − 3Gεχε)
(3)

Cε = Cε
0 − 3(Bε)2χε

(1 − 3Kεχε)
. (4)

It is therefore possible to determine unambiguously the values of all the coupling
parameters by fitting the thermal variation of the different experimental susceptibilities,
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provided the CEF scheme is known in another way. The first- (χM ) and third-order (χ(3)M )
magnetic susceptibilities are directly deduced from the magnetization measurements when
the field is applied along the [001] axis, mode γ , or along [111], mode ε. The quadrupolar
susceptibilities (χQ,P ) can be obtained from elastic constant and parastriction measurements.
Indeed in the paramagnetic phase the relative macroscopic change in length λ induced by
an applied magnetic field is related to the quadrupolar susceptibilities by the following
expressions:

(λ‖ − λ⊥)γ =
√

3

2

Bγ

C
γ

0

χQH
2 and (λ‖ − λ⊥)ε = 3√

2

Bε

Cε
0

χPH
2. (5)

λ‖ and λ⊥ are the relative change in length measured successively parallel and perpendicular
to the direction of the applied field. Both expressions are often written in a linearized way:

H√|λ‖ − λ⊥|γ
=
(

2

3

)1/4 (
C
γ

0

Bγ

)1/2

χ
−1/2
Q and

H√|λ‖ − λ⊥|ε
=
(√

2

3

)1/2 (
Cε

0

Bε

)1/2

χ
−1/2
P . (6)

In the whole RB6 series the thermal variation of the tetragonal (C11 − C12)/2 elastic
constant presents no remarkable anomaly while strong magneto-elastic coupling effects are
observed for the trigonal C44 elastic constant. TbB6 [13] shows the weakest softening of
the C44 mode: only 7%, compared to 70% in DyB6 and HoB6 or 34% in PrB6. This lets
us assume weaker quadrupolar interactions in TbB6. So far the CEF schemes of the heavy
rare earth hexaborides are still unknown preventing any quantitative determination of these
couplings. Present results on TbB6 reveal an important anisotropy of the third-order magnetic
susceptibility in a wide range of temperatures. Such an anisotropy could be accounted for
by CEF effects. Very large CEF level spacings have been reported for the light rare earth
hexaborides [26, 27], associated with large negative fourth-order terms (A4〈r4〉 ≈ −200 K)
and small positive sixth-order terms (A6〈r6〉 ≈ +6 K). As generally observed in rare earth
compounds, it is likely that within the RB6 series the CEF parameters keep their signs and that
the relative weight between the fourth- and sixth-order parameters does not change drastically.
According to the diagrams of Lea et al [28] A4〈r4〉 < 0 and A6〈r6〉 > 0 yield either the ,2

singlet or the ,3 doublet as CEF ground state for the Tb3+ ions. Moreover the weak amplitude
of the sixth-order term with respect to the fourth-order one would lead to values of x ranging
from 0.5 to 1. Assuming that, different sets of CEF parameters have been tested in order to
describe simultaneously the first- and third-order magnetic susceptibilities, the parastriction
and the elastic constants with a consistent set of bilinear exchange, quadrupolar (Gγ,ε,Kγ,ε)
and magneto-elastic (Bγ,ε) parameters. As shown in figure 2 the first-order susceptibility is not
very selective for the CEF parameters, but allows one to adjust the value of the paramagnetic
Curie temperature θp to −37 K. This value was then kept constant in the calculations of the
third-order susceptibilities and the parastriction curves. The attempts to reproduce the thermal
evolution of the parastriction in the trigonal symmetry (equation (6)) definitively rule out a ,3

ground state. Therefore the parameter x must be larger than 0.82. Among the tested sets of CEF
parameters the one which best describes the thermal variation of the various susceptibilities
is W = −0.8 K, x = 0.8 (or A4〈r4〉 = −87 K, A6〈r6〉 = 19 K). This corresponds to a
singlet ,2 ground state with the ,(2)5 and ,3 excited levels respectively at 3.5 and 5.1 K. The
other excited levels, ,(1)5 , ,4 and ,1 range successively at 118.1, 130.6 and 148.5 K above the
ground state. The calculations with this set of parameters are reported in figures 3 and 4 and
compared with the experimental data. The third-order susceptibility is very sensitive to the
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Figure 11. Thermal dependence of the elastic constants in TbB6 for the trigonal (a) and
tetragonal (b) symmetry lowering modes (data from [13]). The background elastic constants,
C0

44 and (C0
11–C0

12)/2, are deduced from the data in GdB6 [13]. The lines represent the thermal
variation of the elastic constants calculated with the CEF set parameters, W = −0.8 K, x = 0.8,
and using the values of Bγ,ε and Kγ,ε given in the figure.

paramagnetic Curie temperature, thus confirming the value of −37 K for θp. It turns out that
the quadrupolar coefficient strongly affects the behaviour of χ(3)M in the tetragonal mode below
100 K; the best agreement is obtained for Gγ = 0.5 mK. In contrast, in the trigonal mode, the
correction due to the quadrupolar interactions has negligible effects compared to that due to
the exchange interactions. Calculations with quadrupolar coefficients ranging from −0.8 to
+0.8 K cannot be distinguished from the curve calculated with Gε = 0 K and θp = −37 K.
For clarity in figure 3(a), only the calculations withGε = 0, 0.005 and 0.0015 K are presented.

In the calculations of the parastriction, the ratiosCγ,ε

0 /Bγ,ε were deduced from the slope at
high temperature ofH/

√|λ‖ − λ⊥|γ,ε, which has a Curie-like variation (line θp = Gγ,ε = 0 K
in figure 5). The thermal evolution of the TbB6 background elastic constants was adjusted
from the evolution reported in [13] for the GdB6 constants (see figure 11). The extrapolation
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at T = 0 K of these curves leads to (C0
11 − C0

12)/2 = 11.45 × 10−5 K/atom and
C0

44 = 2.1 × 10−5 K/atom in TbB6. Using these values, the following magneto-elastic
coefficients were obtained: Bγ = −15 ± 2 K/atom and Bε = −27 ± 2 K/atom. As shown
in figure 5 the variation of the parastriction is mainly accounted for by the bilinear exchange
and the CEF interactions. The existence of quadrupolar interactions cannot be ruled out, but,
within the experimental accuracy it is not possible to determine their sign; indeed Gε may
range from −0.005 to +0.005 K, and Gγ from −0.006 to 5 × 10−4 K.

We also calculated the thermal evolution of the elastic constants measured by Nakamura
et al [13]. In figure 11 are presented the thermal variations of theC44 and (C11 −C12)/2 elastic
constants calculated with W = −0.8 K and x = 0.8. The calculations reproduce with a good
agreement the experimental data in both the trigonal and the tetragonal symmetry lowering
modes using |Bε| = 38 K and |Bγ | = 11 K. Though |Bε| is slightly larger, these values are
consistent with those used to fit the parastriction curves. When normalized by the second-
order Stevens coefficient, the values of the magneto-elastic coefficients, Bε/αJ = 3762 or
2673 K/atom and Bγ /αJ = 1089 or 1485 K/atom, compare well with those found in other
intermetallics [15, 25] but are much smaller than the value of 25 000 K/atom found for Bε/αJ
in PrB6. Note that, like in the case of the parastriction or the third-order susceptibility, the
quadrupolar couplings apparently do not play the main role in the thermal evolution of the
elastic constants. Nevertheless the best adjustments lead to values of Kε = 0.0015 K and
Kγ = 0.5 mK consistent with the values of the total quadrupolar coefficients Gγ,ε previously
determined.

6. Conclusion

In the paramagnetic phase of TbB6, the analysis of the magnetic and magneto-elastic
susceptibilities within the CEF susceptibilities formalism, has been worked out using a coherent
set of parameters. The values of the CEF parameters thus determined for TbB6 are in fairly good
agreement with those reported in the light rare earth hexaborides [26, 27]. Within this CEF
scheme the anisotropic behaviour of the third-order magnetic susceptibility is well reproduced.
The calculations show that the magnetic pair interactions (θp) are the main factor to describe the
magnetic and magneto-elastic properties of TbB6. The intensity of the quadrupolar couplings
is found to be very weak compared to those determined in PrB6 [7]. Indeed the quadrupolar
parameters, Gε,γ , in TbB6 are of the order of 1.5–0.5 mK while in PrB6 they reach values
hundred times larger. These weak quadrupolar couplings are therefore in agreement with the
weak softening of the elastic constants [13].

In the ordered range the magnetization measurements on this single crystal have revealed
several field-induced phases. The magnetic phase diagrams deduced for the first time in
this compound appear very complex with, for instance, up to three different phases in the
tetragonal symmetry. It is likely that the occurrence of field-induced phases is the signature
of multi-q spin arrangements. The possibility of a triple-q magnetic structure in zero field
has been previously reported for DyB6 where a multi-step metamagnetic behaviour of the
magnetization has also been observed at 4.2 K [29]. To characterize the actual nature of
the magnetic phases it is necessary to perform neutron diffraction studies on a single crystal.
This requires the preparation of a new single crystal with 11B enriched boron. In absence
of such a sample, x-ray scattering could be an alternative way of determining the magnetic
structures. In GdB6 for instance x-ray diffraction experiments have revealed changes in the
charge periodicity associated with the two antiferromagnetic phases. In the case of TbB6 a
possible occurrence of new periodicities in the charge diffraction spectrum could be driven by
4f asphericity effects, as the orbital moment is not null for Tb3+ ions. In rare earth compounds
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the 4f asphericity should develop according to the symmetries of the ordered magnetic phases.
Therefore multipolar x-ray scattering experiments may give access to the actual magnetic
structures.
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